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Application of a 7-moment model with slip
boundary conditions to Couette flow

Natalia E. Gimelshein, Dean C. Wadsworth and Sergey F. Gimelshein

ERC, Inc, Edwards AFB, CA 93524

Abstract. The solution of Kliegel’s gas dynamic equations for seven moments of the velocity distribution functions that
include mass, momentum, and directional temperatures, is examined for the one-dimensional heat transfer problem. The slip
boundary conditions for the gas-surface interface are derived. The obtained solutions are compared to the DSMC predictions.
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INTRODUCTION

Anisotropy of the molecular velocity distribution function is important for rarefied gases characterized by strong
thermal non-equilibrium. Such a translational anisotropy arises both in compression flows dominated by shock waves,
and expanding flows such as nozzle expansions and plumes. In both cases, taking into account the translational
anisotropy is critical for accurate flow modeling. The need to account for the anisotropy in nonequilibrium gases
was understood as early as 1867 [1]. Besides the transitional rarefied flow regime, this anisotropy may be important
in turbulent flow modeling, especially when the transition to turbulence needs to be predicted. The latter one is
traditionally approached with continuum methods based on the solution of Navier-Stokes equations, which, as was
pointed out in Ref. [2], may not be the correct approximate solution of the Boltzmann equation for this case.

In Ref. [2], an anisotropic fluid seven equation set was presented for the density, three fluid velocity components, and
three directional thermal kinetic energies. This technique, based on a Chapman-Enskog-like expansion of the velocity
distribution function over an ellipsoidal distribution function, represents a macroscopic approach to non-equilibrium
flows, and as such complements microscopic, kinetic methods, in their consideration of flow nonequilibrium. In the
past, several researchers have attempted to include translational non-equilibrium in a macroscopic fashion. Candler
et al. [3] developed a multi-temperature equation set and compared numerical solutions for the normal shock wave
problem with DSMC results. Dogra et al. [4] presented calculations using a multi-temperature model for unsteady
blast-type problems. A numerical method for Maxwell’s moment equations for the normal shock problem was
presented in Ref. [5].

Previous study [6] has shown that the 7-moment model provides fairly accurate solutions to the shock wave problem
for relatively low Mach numbers, and has some and numerical issues for hypersonic shocks. The main objective of the
present work is an assessment of the accuracy of the 7-moment model predictions for surface-dominated 1D Couette
heat transfer problem in the range of Knudsen numbers where the conventional Navier-Stokes approach begins to fail.
Slip boundary conditions for the 7-moment model, derived similarly to the conventional 5-moment slip conditions
[7], are presented, and the results are compared with those obtained by three other approaches, solution of the Navier-
Stokes equations, solution of the ES-BGK equation, and the DSMC method.

SEVEN MOMENT GAS DYNAMIC EQUATIONS

Similar to the conventional Euler and Navier-Stokes equations for the first five moments of the velocity distribution
function f , gas dynamic equations may also be derived for seven moments off [2], namely for gas density, velocity
in three spatial directions, and three directional temperatures, which are defined as

Ti =
1
R

∞
∫

−∞

c2
i f (c)dc,
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where the indexi refers to spatial direction (x, y, or z), R is the gas constant, andc≡ (cx,cy,cz) is the thermal velocity.
These equations are written as the mass, momentum, and energy conservation equations, and for the Maxwell molecule
interaction model they reduce to [2]

∂ρ
∂ t

+∇ · (ρu) = 0 (1)

∂ (ρui)

∂xi

∂
[

ρu2
i +RTi

]

∂xi
+

∂ (ρuiu j)

∂x j
+

∂ (ρuiuk)

∂xk
=

∂τi j

∂x j
+

∂τik

∂xk
(2)

∂
[

ρu2
i +RTi

]

∂ t
+

∂
[

ρ(u3
i +3uiRTi +qiii)

]

∂xi
+

∂
[

ρ(u2
i u j +u jRTi +qii j)−2uiτi j

]

∂x j
+

∂
[

ρ(u2
i uk +ukRTi +qiik)−2uiτik

]

∂xk
=−ρν(RTi −RT ) (3)

Here,ν is the collision frequency, and indicesi 6= j 6= k denote any of the spatial directionsx, y, andz, so equations
2 and 3 each stand for three equations for the three spatial directions. For this equation set to be closed, the shear stress

τi j = ρ
∞
∫

−∞

cic j f (c̄)dc̄

and heat flux

qi jk =
1
2

ρ
∞
∫

−∞

cic jck f (c̄)dc̄

need to be specified in terms of the above seven moments off . Such a closure was proposed in Ref. [2] and is written
as

τi j =
Rρ
ν

[

Tj
∂ui

∂x j
+Ti

∂u j

∂xi

]

(4)

and

qiii =−R2ρTi

4ν

[

7
∂Ti

∂xi
+

∂Tj

∂xi
+

∂Tk

∂xi

]

, qi j j =−R2ρTi

12ν

[

3
∂Ti

∂xi
+5

∂Tj

∂xi
+

∂Tk

∂xi

]

. (5)

Note that the above equation set reduces to the classical Navier-Stokes equations for equal directional temperatures
Ti = Tj = Tk. The expressions for the components of the shear stress and heat flux were validated in Ref. [6]. In that
work, the shear stresses directly sampled in the DSMC method were compared to the Navier-Stokes and 7-moment
values evaluated using the DSMC macroscopic properties for a 2D hypersonic flow over a sphere-cone configuration.
The 7-moment approach was found to provide a significantly better agreement with the DSMC results than the Navier-
Stokes relations.

SLIP BOUNDARY CONDITIONS

Application of the 7-moment equation set to model gas flow in slip regime implies that some kind of slip boundary
conditions need to be set at the gas-surface interfaces in order to more accurately describe the flow. In this work, the
derivation of the slip boundary conditions for directional temperatures and velocities closely follows the conventional
derivation for the Navier-Stokes equations [7]. As in Ref. [7], the Maxwell model of gas-surface interactions is
assumed, with the number of molecules reflected specularly and diffusely(1−θ) andθ , respectively. For this model,
with known form of the velocity distribution function of molecules that come to the surface,fs, it is possible to derive
expressions for the total mass, momentum, and directional energy fluxes in the direction of the outward normal to the
surface. Without loss of generality, it is assumed hereafter that the direction of the normal coincides with the positive
y direction.

According to the Maxwell model, the fractionθ of all molecules colliding with the surface will fully accommodate
on the surface and thus will be distributed according tofw, where fw is the Maxwellian distribution function with zero
macroscopic velocity and a temperature equal to the surface temperature. The fraction 1− θ of colliding molecules
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will be distributed according tof ′s(cx,cy,cz) = fs(cx,−cy,cz). It is therefore possible to present the total flux of some
velocity-dependent propertyP(c) as the sum of incoming and outcoming molecules,

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

Puy fs(cx,cy,cz)dcx dcy dcz =

∞
∫

−∞

0
∫

−∞

∞
∫

−∞

Puy fs(cx,cy,cz)dcx dcy dcz+

+(1−θ)
∞
∫

−∞

∞
∫

0

∞
∫

−∞

Puy f ′s(cx,cy,cz)dcx dcy dcz +θ
∞
∫

−∞

∞
∫

0

∞
∫

−∞

Puy fw(cx,cy,cz)dcx dcy dcz. (6)

After that, the known form of the velocity distribution function is used in Eqn. 6 along with the specific propertyP.
Similar to Ref. [7], the distribution function in the 7-moment equation set is presented as the following expansion in
terms of the components of the thermal velocity,

f (c̄) = f0(c̄)

(

1+axHx + . . .+
1
2

axxH2
x +

1
2

axyHxHy + . . .+
1
6

axxxH3
x +

1
6

axxyH2
x Hy + . . .

)

, (7)

where f0(c̄) = n
(2πR)3/2

√
TxTyTz

exp
{

−H2

2

}

is the equilibrium distribution function, andHi =
ci√
RTi

. The coefficientsa

that are generally functions of gas macroparameters, depend on the equation under consideration, and for the 7-moment
equation set Eqs. (1)-(3) may be directly related to the coefficients used in the expansion proposed in Ref. [2],

f (c̄) = f0(c̄)

(

1+
1
ν
[

Aici +Ai jcic j +Ai jkcic jck
]

,

)

(8)

where the subscriptsi, j,k refer to spatial directions. The exact definition of the coefficientsA of Eq. (8) may be found
in Ref. [2].

The expressions for the slip wall boundary conditions are calculated after substitution of gas dynamic properties
(density, momentum, and directional temperatures) and the expansion (refdfs) into Eq. 6. If the propertyP is density,
then equation 6 reduces to

ρs
√

Tsy = ρw
√

Twy (9)

For the tangential momentum flux, simple transformations of the wall flux equations result in

√
RTsx

(

2−θ
θ

√

π
2

axy +
axyy

2

)

+ux = 0 (10)

Similar expression for the normal momentum flux may be written as

2−θ
θ

2

3
√

2π
ρsTsyayyy +ρsTsy = ρwTwy (11)

For the tangential and normal directional energies,

ρs
√

TsyTsx

(

1+
2−θ
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√
2πaxxy

)

= ρw
√

TwyTwx (12)

ρsT
3/2

sy

(
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√

π
2
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2θ

ayyy

)

= ρwT 3/2
wy (13)

The subscripts in the above equations refers to the slip values at the surface, and the subscriptw denotes given
wall values. It needs to be mentioned that the expressions for the momentum and energies may be further simplified if
single temperature is assumed at the wall, i.e.Tx = Ty = Tz. The coefficients in Eqs. (11) and (13) may be determined
as

axy =
2
ν
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√

TxTy =− 2
ν
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,
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and

ayyy =
2
ν

Ayyy(RTy)
3
2 =− 1

6ν

√

R
Ty

(

∂Tx

∂x
+7

∂Ty

∂x
+

∂Tz

∂x

)

.

The numerical solution of the equations for the momentum and directional energies provides the required values for
the velocity slip and temperature jump at the wall.

SOLUTION OF 1D HEAT TRANSFER PROBLEM FOR LOW TEMPERATURE RATIO

The FiPy finite volume partial differential equation solver [8] is used to integrate Eqs. (1)-(3). The obtained results are
compared with DSMC results computed with SMILE code [9] and a 1D Navier-Stokes (NS) code that incorporates
first order temperature slip (jump) at the surface. Consider first the temperature profiles between parallel walls for
relatively low hot-wall to cold-wall temperature ratioχ . The results forχ = 1.1 in the slip flow regime are shown in
Fig. 1 for two continuum approaches. For the 7-moment solutions, not only the total temperatureT is shown, but also
the temperatures in directions parallel (x) and perpendicular (y) to the wall. As can be expected for such a close to
equilibrium flow, the 7-moment and NS solutions are almost identical, with the biggest difference observed at the hot
wall. The insert in the left upper corner of Fig. 1 shows the details of the flow in the vicinity of the hot wall. It is seen
that the temperature separation, although visible, still does not exceed 0.1% of the corresponding temperature values.
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FIGURE 1. Comparison of temperature profiles obtained with NS and 7-moment equations forχ = 1.1 andKn = 0.02.
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FIGURE 2. Comparison of 7-moment solutions forχ = 2, Kn = 0.05 with NS (left) and DSMC (right) results.
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An increase in temperature ratio and gas density results in a somewhat larger difference between 7-moment and
NS solutions, although the solutions are still fairly similar, as shown in Fig. 2 (left). It is interesting to note that the
temperature slip values are very close for the continuum solutions, as seen in the insert. Separation of parallel and
perpendicular directional temperatures is much more pronounced than forχ = 1.1, and the difference between them
reaches 1% at the hot wall. The qualitative behavior of the directional temperatures at the hot wall is qualitatively
similar to the DSMC results (Fig. 2, right), with the temperature in the direction parallel to the wall being visibly
lower. Note that the slip values ofTx andTy obtained by the solution of the 7-moment equations are close to those in
the DSMC method, although there is some difference in the central region between the plates. Generally, the agreement
between 7-moment and DSMC solutions is somewhat better than between NS with slip and DSMC.

SOLUTION OF 1D HEAT TRANSFER PROBLEM FOR HIGH TEMPERATURE RATIO

Comparisons between different approaches were also conducted for a rather high temperature ratio of 10. As illustrated
in Fig. 3 (left), for a near-continuum flow (Kn= 0.01), the directional temperatures at the wall for the 7-moment and
DSMC solutions agree very well. Similar to the results presented in the previous section, the larger difference is
observed inside the gas volume. Note also that both continuum and kinetic approaches predict the regions where the
directional temperatures separate of about 3% of the total separation between plates. For the transitional flow regime,
while there is a qualitative agreement between the temperature separation regions near the hot wall, there is a noticeable
difference at the col wall for the 7-moment and DSMC solutions. At the cold wall, 7-moment result is fairly close to
the NS profile, while the DSMC solution agrees with that obtained with the solution of the ES-BGK model kinetic
equation (SMOKE code is used for the latter). Further analysis is needed to clarify the reason for such a significant
difference between the two continuum and two kinetic methods at the cold wall.
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FIGURE 3. Comparison of 7-moment and DSMC temperature profiles forχ = 10,Kn = 0.01 (left) andχ = 10,Kn = 0.1 (right).

CONCLUSIONS

Applicability of gas dynamic equations for 7 moments of the velocity distribution function to predict non-equilibrium
flows in slip regime was analyzed for a 1D heat transfer problem. Slip boundary conditions were developed for
these equations, and significant directional temperature separation at the cold wall was observed. The obtained results
were compared with DSMC and ES-BGK predictions, as well as with the solution of NS equations with slip. Good
agreement between the 7-moment and DSMC results at the hot wall where the temperature separation is largest, was
shown. Noticeable difference between kinetic and continuum predictions was observed at the cold wall for transitional
flow with a high temperature ratio.
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